

The Value of Values and Their Valuations

Seth M. Lynn Dahab Associates

Why bother? It empowers YOU!

Before we start...

- Please MUTE your computer microphone during presentation.
- SO, HOW CAN YOU ASK QUESTIONS?
- The best way is to use the IM feature on the right side of your GoToMeeting screen.
- Just shoot me a question, and I'll respond immediately.
- Or you can just UN-MUTE your mic and ask away !
- Any questions before we start ?
- Then let's begin...

First, the Logic

Would you be willing to lend me \$1,000 today if I promised to repay your \$1,000 in a year?

- Okay, so how much are you willing to lend me if I give you \$1,000 in a year?
- How about lending me \$500? \$100? \$50? \$10?
- Why so little? Don't you trust me?

A Fair Return plus Uncertainty

You deserve to be paid a fair return
You want to be repaid on a timely basis
You don't know what the future will bring
How much do you trust the borrower?

Can you get your money back sooner?

Next, some lingo...

- Present Value current worth of a future sum (or stream) of money
- Future Value what a sum or stream of payments will be worth at a specific point in the future.
- Required Return (aka Discount Rate) a percentage rate that reflects a lender's required (annual) return
- Risk Premium a quantification in percentage terms of a subjective evaluation of uncertainty.
- Liquidity Premium an adjustment compensating lenders for limited access to their money.

4 Symbols & Synonyms

- Present Value = PV = Net Present Value = NPV = Discounted Present Value = Price you're willing to pay today.
- Future Value = FV = Value of a sum or stream in tomorrow's terms.
- Discount Rate = Required Rate of Return = r = RRR = the return you want to get from an investment.
- Time Periods = n = Number of periods (typically years) over which the calculation is considered.

from Theory to Practice

- Example A: If your required return is 7.5% how much would a payment of \$1000.00 in one year be worth today?
- Example B: If your required return is 7.5% how much would a payment of \$1000.00 in five years be worth today?
- Example C: If your required return is 7.5% how much would a payment of \$1000.00 in ten years be worth today?

Basic Formula...

Formula with some inputs...

Formulas with all the numbers...

A. $PV = \frac{\$1000}{(1.075)^1}$ \$1000 = \$930.23 (1.075) в. PV = \$1000 \$1000 = \$696.56 _ (1.075)⁵ (1.436) $=\frac{\$1000}{(1.075)^{10}}=$ \$1000 = \$485.19 c. **PV** (2.061)

Logic Check:

The longer you have to wait to get repaid... The less you're willing to lend.

Now let's go the other way:

What's \$1000 today going to be worth in the future? We use the same formula but switch things around

 $FV = PV \times (1+r)^n$

Here are the Future Values* @In 1 year = \$1,075.00 115 years = \$1,435,63ln 10 years = \$2,061.03In 100 years = \$1,383,077.21

* 7½ % Required Return

Here's a fun fact...

Indians sold Manhattan to Dutch for \$24 in 1626 If invested at 7½% per year Over that time period (389) years) The value today would be ???

\$40 Trillion !

2010 estimate NYC property value \$ 1.3 Trillion

Now, back to work...

What about calculating the Present Value of a stream of payments over time?

For example...

What's the value of \$75 paid at end of each year over the next 5 years?

It's actually just the sum of 5 PV calculations:

 $PV = \frac{PMT}{(1+r)^{1}} + \dots + \frac{PMT}{(1+r)^{5}}$

but it's frequently written as...

The Stigma of the Sigma...Σ

lt's no big deal Σ = Sigma = Sum

Just add them together

\$69.77 + \$64.90 + \$60.37 + \$56.16 + \$52.24

\$303.44

Why is this important?

These are the formulas used to price BONDS in the market,

and

They are used by Actuaries for determining Pension Fund valuations!

Bonds pay \$1000 at maturity together with a stream of payments called "coupons".

Valuing \$1000 in 5 years Remember this?

A. $PV = \frac{\$1000}{(1.075)^1}$ \$1000 = \$930.23 _ (1.075) \$1000 \$1000 \$696.56 в. PV _ (1.075)5 (1.436) = \$1000 (1.075)¹⁰ = \$1000 = \$485.19 c. PV (2.061)

Add that to the coupons flow...

\$69.77 + \$64.90 + \$60.37 + \$56.16 + \$52.24

That's how bonds are priced...

\$696.56 + \$303.44 = \$1,000.00

PRINCIPLE + COUPON = TOTAL

Let's discuss Pension Liabilities

Actuaries use similar equations to calculate pension fund valuations.

Meet Dan...

- He's a 40 year old county administrator
- Been working for 10 years
- And plans to stay until retirement
- He qualifies for pension benefits under the county's plan

Now here's Chuck...

• He's your actuary

- Chuck helps figure out how much you need to set aside for Dan's retirement benefits
- How much does Chuck recommend you have invested to fund these payments?

Let's help Chuck figure out what's needed...

• Dan will get \$20,000 per year in a lump sum.

- Payments will come at BEGINNING of each year.
- In nominal terms that comes to \$500,000.
- Let's make some assumptions:
 - Dan will retire at 65 and live until he's 90
 - His annual payments will not change
 - There are no survivor benefits
 - Annual investment returns will be 7½ %
 - Our goal is to be fully funded
- How much do we recommend should invested today to fund these benefits?

TWO WAY POWE

Let's recall this equation: The PV of a Stream of Payments

Payments made at START of each year!

PVbp = \$239,659.34

Year	Payment	Disc Value	
1	\$ 20,000.00	\$ 20,000.00	
2	\$ 20,000.00	\$ 18,604.65	
3	\$ 20,000.00	\$ 17,306.65	
4	\$ 20,000.00	\$ 16,099.21	
5	\$ 20,000.00	\$ 14,976.01	
6	\$ 20,000.00	\$ 13,931.17	
7	\$ 20,000.00	\$ 12,959.23	
8	\$ 20,000.00	\$ 12,055.10	
9	\$ 20,000.00	\$ 11,214.04	
10	\$ 20,000.00	\$ 10,431.67	
11	\$ 20,000.00	\$ 9,703.88	
12	\$ 20,000.00	\$ 9,026.86	
13	\$ 20,000.00	\$ 8,397.08	
14	\$ 20,000.00	\$ 7,811.24	
15	\$ 20,000.00	\$ 7,266.27	
16	\$ 20,000.00	\$ 6,759.32	
17	\$ 20,000.00	\$ 6,287.74	
18	\$ 20,000.00	\$ 5,849.06	
19	\$ 20,000.00	\$ 5,440.99	
20	\$ 20,000.00	\$ 5,061.38	
21	\$ 20,000.00	\$ 4,708.26	
22	\$ 20,000.00	\$ 4,379.78	
23	\$ 20,000.00	\$ 4,074.21	
24	\$ 20,000.00	\$ 3,789.97	
25	\$ 20,000.00	\$ 3,525.55	
Total	\$500,000.00	\$239,659.34	

Here are the numbers...

Total \$500,000.00 \$239,659.34

Y	'ear	Payment	Di	Disc Value	
	1	\$ 20,000.00	\$	20,000.00	
	2	\$ 20,000.00	\$	18,604.65	
	3	\$ 20,000.00	\$	17,306.65	
	4	\$ 20,000.00	\$	16,099.21	
	5	\$ 20,000.00	\$	14,976.01	
	6	\$ 20,000.00	\$	13,931.17	
	7	\$ 20,000.00	\$	12,959.23	
	8	\$ 20,000.00	\$	12,055.10	
	9	\$ 20,000.00	\$	11,214.04	
	10	\$ 20,000.00	\$	10,431.67	
	11	\$ 20,000.00	\$	9,703.88	
	12	\$ 20,000.00	\$	9,026.86	
	13	\$ 20,000.00	\$	8,397.08	
	14	\$ 20,000.00	\$	7,811.24	
	15	\$ 20,000.00	\$	7,266.27	
	16	\$ 20,000.00	\$	6,759.32	
	17	\$ 20,000.00	\$	6,287.74	
	18	\$ 20,000.00	\$	5,849.06	
	19	\$ 20,000.00	\$	5,440.99	
	20	\$ 20,000.00	\$	5,061.38	
	21	\$ 20,000.00	\$	4,708.26	
	22	\$ 20,000.00	\$	4,379.78	
	23	\$ 20,000.00	\$	4,074.21	
	24	\$ 20,000.00	\$	3,789.97	
	25	\$ 20,000.00	\$	3,525.55	

But we're not done yet.

We need to discount this number

Total \$500,000.00 \$239,659.34

Back to Basics...

Now with numbers...

What's needed to fund Dan's benefits...

\$39,299.11 =

\$239,659.34

6.0983

You are now empowered...

Go forth and calculate!

This ends the official presentation. But if we have more time...

What about shorter compounding periods?

- How about monthly, quarterly, semiannual?
- Changing the compounding period changes the outcome.
- 7½% per year is not 7½% per year compounded monthly!
- Let's compare the results...

We saw this earlier... Based on 71/2% per year

= \$1000 (1.075)¹ \$1000 a. PV = \$930.23 _ (1.075) \$1000 \$1000 = \$696.56 в. <mark>Р</mark>V (1.075)5 (1.436) _ \$1000 \$1000 = \$485.19 c. PV (1.075)¹⁰ = (2.061)

Now consider 7¹/₂% per year compounded monthly

The shorter the compounding period the greater the impact 3 7.5% compounded annually = 7.500% 3 7.5% compounded semi-annually = 7.641% 7.5% compounded monthly = 7.763%7.5% compounded weekly = 7.783% 7.5% compounded daily = 7.788% 7.5% compounded continuously ???

There is a special formula for continuous compounding...

To calculate use Napier's number which is based on a natural logarithm)

Napier's number = e = ~ 2.7183

The formula is: $e^{(r)}$

So it is: $2.7183^{(.075)} = 1.7789$ or 7.789%

Which is 3.9% greater than the annual rate!

Thanks for participating!